FLAC3D 6.0 PFC Plugin Conveyor
Generating Videos via Plots

This tutorial illustrates how to generate movies from FLAC3D plots. It is also applicable for 3DEC, PFC, and UDEC.

Converting Plots to Data Files

Any model plot that you create interactively by adding plot-items and adjusting settings can be represented by an equivalent set of commands. This is useful should you want to include command-driven plotting in your modeling run.

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.

Elastic Properties of Fractured Rock Masses With Frictional Properties and Power Law Fracture Size Distributions

We derive the relationships that link the general elastic properties of rock masses to the geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces.

We extend the well-known elastic solutions for free-slipping cracks to fractures whose plane resistance is defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold.

Blast Movement Simulation Through a Hybrid Approach of Continuum, Discontinuum, and Machine Learning Modeling

This work presents a hybrid modeling approach to efficiently estimate and optimize rock movement during blasting. A small-scale continuum model simulates early-stage, near-field blasting physics and generates synthetic data to train a machine learning (ML) model. Key parameters such as expanded hole diameter, burden velocity, and gas pressure are obtained through the ML model, which then inform a discontinuum model to predict far-field muckpile formation. The approach captures essential blast physics while significantly accelerating blast design optimization.

  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....